In the truss shown, a mass $m = 10\text{kg}$ is hung from the node J. The magnitude of net force (in Newtons) transferred by the truss EFGHIJ onto the truss JKLMNO at the node J is ________.

Assume acceleration due to gravity, $g = 10\text{m/s}^2$.
A ball moves along a planar frictionless slot as shown. Which one of the paths shown closely matches the path taken by the ball after it exits the slot at E?

(A) path m (B) path n (C) path p (D) path q

Question Number : 58 Correct : 1 Wrong : -0.33

A rod EF moving in a plane has velocity \(V_E \) at E and \(V_F \) at F that are parallel to each other. Which of the following CANNOT be true?

(A) Both \(V_E \) and \(V_F \) are perpendicular to EF.

(B) Magnitude of \(V_E \) is equal to the magnitude of \(V_F \) and the angular velocity of EF is zero.

(C) The velocity \(V_E \) is not perpendicular to EF and the angular velocity of EF is nonzero.

(D) Magnitude of \(V_E \) is not equal to the magnitude of \(V_F \) and the angular velocity of EF is nonzero.
Question Number : 59 Correct : 1 Wrong : -0.33

The beam shown below carries two external moments. A counterclockwise moment of magnitude $2M$ acts at point B and a clockwise moment of magnitude M acts at the free end, C. The beam is fixed at A. The shear force at a section close to the fixed end is equal to

(A) $\frac{2M}{L}$ (B) $\frac{M}{L}$ (C) 0 (D) $-\frac{M}{L}$

Question Number : 60 Correct : 1 Wrong : -0.33

Two pendulums are shown below. Pendulum-A carries a bob of mass m, hung using a hinged massless rigid rod of length L whereas Pendulum-B carries a bob of mass $4m$ and length $L/4$. The ratio of the natural frequencies of Pendulum-A and Pendulum-B is given by

(A) 1 : 2 (B) 1 : 1 (C) $\sqrt{2} : 1$ (D) 2 : 1

Question Number : 61 Correct : 1 Wrong : -0.33

A closed thin-walled cylindrical steel pressure vessel of wall thickness $t = 1\text{mm}$ is subjected to internal pressure. The maximum value of pressure p (in kPa) that the wall can withstand based on the maximum shear stress failure theory is given by

(Yield strength of steel is 200MPa and mean radius of the cylinder $r = 1\text{m}$).

(A) 100 (B) 200 (C) 300 (D) 400
The state of stress at a point in a body is represented using components of stresses along X and Y directions as shown. Which one of the following represents the state of stress along X’ and Y’ axes? (X’ - axis is at 45° clockwise with respect to X - axis).
An aluminum specimen with an initial gauge diameter \(d_0 = 10 \text{mm} \) and a gauge length \(l_0 = 100 \text{mm} \) is subjected to tension test. A tensile force \(P = 50 \text{kN} \) is applied at the ends of the specimen as shown resulting in an elongation of \(1 \text{mm} \) in the gauge length. The Poisson’s ratio (\(\nu \)) of the specimen is _______.

Shear modulus of the material \(G = 25 \text{GPa} \). Consider engineering stress-strain conditions.
A rectangular sheet $ABCD$ of dimensions a and b along X and Y directions, respectively, is stretched to a rectangle $AB'C'D'$, as shown. The maximum principal strain (ε_1) and minimum principal strain (ε_2) due to the stretch are given by

\[(A) \ \varepsilon_1 = 0.001 \text{ and } \varepsilon_2 = 0.001 \quad (B) \ \varepsilon_1 = -0.001 \text{ and } \varepsilon_2 = 0.001 \]
\[(C) \ \varepsilon_1 = 0.001 \text{ and } \varepsilon_2 = -0.001 \quad (D) \ \varepsilon_1 = -0.001 \text{ and } \varepsilon_2 = -0.001 \]

A solid bar of uniform square cross-section of side b and length L is rigidly fixed to the supports at the two ends. When the temperature in the rod is increased uniformly by T_c, the bar undergoes elastic buckling. Assume Young’s modulus E and coefficient of thermal expansion α to be independent of temperature. The coefficient of thermal expansion α is given by

\[(A) \ \frac{3\pi^2 b^2}{T_c L^2} \quad (B) \ \frac{\pi^2 b^2}{T_c L^2} \quad (C) \ \frac{\pi^2 b^2}{2T_c L^2} \quad (D) \ \frac{\pi^2 b^2}{3T_c L^2}\]
Two rigid blocks, of masses 10kg and 15kg, are arranged one on top of the other and placed on a horizontal rough surface as shown. The blocks are connected to each other through an inextensible cable passing over a frictionless pulley. The coefficients of static friction between the blocks and also between the bottom block and the surface are all equal to 0.3. The force \(P \) (in Newtons) needed to set the blocks in motion towards right is \(\ldots \).

(Assume acceleration due to gravity \(g = 10\text{m/s}^2 \)).

A truss system EFGH shown below is built using members EF, GH and FH of the same cross-sectional area 10mm\(^2\) and member FG of cross-sectional area 20mm\(^2\). The total strain energy stored (in Nm) in the system due to a force \(P = 1\text{kN} \) acting at F is \(\ldots \).

Assume elastic deformations and members are made of steel with elastic modulus of 200GPa. .
A rigid frame grips on to a steel wall as shown using a powerful magnet at the top support G and with a roller support at E. EF is horizontal. A man stands on the platform attached to the frame 1m away from the wall as shown. Assume the frame and magnet assembly to be of negligible weight and the mass of the man to be 80kg. The magnitude of the reaction (in Newtons) exerted by the frame onto the steel wall due to the weight of the man is ________.

The magnetic force of attraction of the magnet at no load condition is 1kN. Magnet can be assumed to be small enough that it offers negligible moment resistance. Assume acceleration due to gravity, \(g = 10\text{m/s}^2 \).
A manually operated band brake has a control lever EFG as shown and has a coefficient of kinetic friction equal to 0.2. The cylinder initially rotates clockwise at a constant frequency of **10 revolutions per second**. A force \(P = 300 \text{N} \) is applied at G. The pin support at O is frictionless. The radius of the cylinder is \(r = 0.15 \text{m} \) and the radius of gyration is \(0.1 \text{m} \). The mass of the cylinder is 50kg. Assume acceleration due to gravity \(g = 10 \text{m/s}^2 \). The time required (in seconds) to reduce the rotational frequency to **5 revolutions per second** is ________.
In a pin-connected mechanism shown, load P applied at F is 50N. Neglect the weight of the links and assume $k = 1 \text{kN/m}$ for the spring. The bars EH and FG are pinned at O at their centre such that the lengths of EO, GO, HO and FO are all equal to $\ell = 0.2 \text{m}$. The spring between G and H is unstretched when $\theta = 45^\circ$.

The angle θ (in degrees) under equilibrium is ________.
The frame shown below carries a vertical load \(P = 10 \text{kN} \) at its free end \(D \). The frame is fixed at \(A \) and has a roller support at \(B \). Magnitude of the reaction force at \(B \) (in \(\text{kN} \)) is \(\underline{\text{????}} \).

Assume that the effect of the axial force on bending is negligible.

Consider the system shown below. Mass \(M \) is fixed to the rod \(AC \) at a distance \(x \) from the hinge point at \(B \). Two springs of stiffness \(3K \) and \(K \) are attached to the rod at points \(A \) and \(C \), respectively. The natural frequency of angular oscillation of the system about \(B \) is \(20 \text{ rad/s} \). Assume the rod to be rigid and massless. Magnitude of \(x \) (in metres) is \(\underline{\text{????}} \). (\(M = 30 \text{kg} \), and \(K = 1 \text{kN/m} \)).
The simply supported beam shown below is subjected to a clockwise moment M at point A and two counterclockwise moments $2M$ and M at points B and C, respectively. Which one of the following is the correct bending moment diagram (tensile at bottom is positive moment) for the beam?

(A)

(B)

(C)

(D)
The structure shown below is of rectangular cross section and carries a load of 10kN at its free end E. Maximum bending stress (in MPa) developed in the beam due to the external load is ________.

The depth of the beam is 300mm and the width is 150mm.

Two circular rods shown below carry the same axial load P. The Rod-A has uniform cross-section and the Rod-B has non-uniform cross-section as shown. The ratio of elongation of Rod-A to Rod-B is given by

(A) 1:1 (B) 1:2 (C) 2:1 (D) 3:1
A composite shaft is made of a steel tube with an inner brass core perfectly bonded together as shown. The shaft is fixed at one end and subjected to a torque of $2T$ at the other end. Shear modulus of steel is G and that of brass is $G/2$. The outer radius of the steel tube is $R = 2r$ and radius of the inner brass core is r. The magnitude of shear stress at the interface (point X) and in the steel tube is closest to

\[
\begin{align*}
(A) & \quad 0.041 \frac{T}{r^3} \\
(B) & \quad 0.082 \frac{T}{r^3} \\
(C) & \quad 0.16 \frac{T}{r^3} \\
(D) & \quad 0.41 \frac{T}{r^3}
\end{align*}
\]
A massless rod of rectangular cross-section is subjected to a force P at origin O as shown. The expression for the stress σ_{zz} at point Q is given by

(A) $6 \frac{P}{b^2}$
(B) $10 \frac{P}{b^2}$
(C) $-14 \frac{P}{b^2}$
(D) $- \frac{P}{b^2}$
Question Number : 165
Correct : 2 Wrong : -0.66

Which among the following statement(s) is (are) correct.

P: ENSO and El-Nino are the same and refer to the warming of Equatorial Eastern Pacific SST.
Q: ENSO is an atmosphere-ocean coupled phenomenon and El-Nino is its oceanic part.
R: ENSO is an atmospheric phenomenon and El-Nino is an oceanic phenomenon
S: ENSO is the oscillatory component of El-Nino having a period of 4.7 years.

(A) P & R (B) Only Q (C) P, Q and S (D) R & S

Question Number : 166
Correct : 1 Wrong : -0.33

The event would have been successful if you ____________ able to come.

(A) are (B) had been (C) have been (D) would have been

Question Number : 167
Correct : 1 Wrong : -0.33

There was no doubt that their work was thorough.

Which of the words below is closest in meaning to the underlined word above?

(A) pretty (B) complete (C) sloppy (D) haphazard
Four cards lie on a table. Each card has a number printed on one side and a colour on the other. The faces visible on the cards are 2, 3, red, and blue.

Proposition: If a card has an even value on one side, then its opposite face is red.

The cards which MUST be turned over to verify the above proposition are

(A) 2, red
(B) 2, 3, red
(C) 2, blue
(D) 2, red, blue

What is the value of x when $81 \times \left(\frac{16}{25}\right)^{x+2} \div \left(\frac{3}{5}\right)^{2x+4} = 144$?

(A) 1
(B) -1
(C) -2
(D) Cannot be determined

Two dice are thrown simultaneously. The probability that the product of the numbers appearing on the top faces of the dice is a perfect square is

(A) 1/9
(B) 2/9
(C) 1/3
(D) 4/9

Bhaichung was observing the pattern of people entering and leaving a car service centre. There was a single window where customers were being served. He saw that people inevitably came out of the centre in the order that they went in. However, the time they spent inside seemed to vary a lot: some people came out in a matter of minutes while for others it took much longer.

From this, what can one conclude?

(A) The centre operates on a first-come-first-served basis, but with variable service times, depending on specific customer needs.
(B) Customers were served in an arbitrary order, since they took varying amounts of time for service completion in the centre.
(C) Since some people came out within a few minutes of entering the centre, the system is likely to operate on a last-come-first-served basis.
(D) Entering the centre early ensured that one would have shorter service times and most people attempted to do this.
A map shows the elevations of Darjeeling, Gangtok, Kalimpong, Pelling, and Siliguri. Kalimpong is at a lower elevation than Gangtok. Pelling is at a lower elevation than Gangtok. Pelling is at a higher elevation than Siliguri. Darjeeling is at a higher elevation than Gangtok.

Which of the following statements can be inferred from the paragraph above?

i. Pelling is at a higher elevation than Kalimpong
ii. Kalimpong is at a lower elevation than Darjeeling
iii. Kalimpong is at a higher elevation than Siliguri
iv. Siliguri is at a lower elevation than Gangtok

(A) Only ii (B) Only ii and iii (C) Only ii and iv (D) Only iii and iv

P. Q. R. S. T and U are seated around a circular table. R is seated two places to the right of Q. P is seated three places to the left of R. S is seated opposite U. If P and U now switch seats, which of the following must necessarily be true?

(A) P is immediately to the right of R
(B) T is immediately to the left of P
(C) T is immediately to the left of P or P is immediately to the right of Q
(D) U is immediately to the right of R or P is immediately to the left of T

Budhan covers a distance of 19 km in 2 hours by cycling one fourth of the time and walking the rest. The next day he cycles (at the same speed as before) for half the time and walks the rest (at the same speed as before) and covers 26 km in 2 hours. The speed in km/h at which Budhan walks is

(A) 1 (B) 4 (C) 5 (D) 6
The points in the graph below represent the halts of a lift for durations of 1 minute, over a period of 1 hour.

Which of the following statements are correct?

i. The elevator never moves directly from any non-ground floor to another non-ground floor over the one hour period

ii. The elevator stays on the fourth floor for the longest duration over the one hour period

(A) Only i (B) Only ii (C) Both i and ii (D) Neither i nor ii