Section 1: Atomic Structure and Periodicity

Section 2: Structure and Bonding
Ionic and covalent bonding, MO and VB approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridization, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding and van der Waals interactions. Ionic solids, ionic radii and lattice energy (Born-Haber cycle). HSAB principle.

Section 3: s, p and d Block Elements
Oxides, halides and hydrides of alkali, alkaline earth metals, B, Al, Si, N, P, and S. General characteristics of 3d elements. Coordination complexes: valence bond and crystal field theory, color, geometry, magnetic properties and isomerism.

Section 4: Chemical Equilibria
Osmotic pressure, elevation of boiling point and depression of freezing point, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications. Equilibrium constants (Kc, KP and Kx) for homogeneous reactions.

Section 5: Electrochemistry
Conductance, Kohlrausch law, cell potentials, EMF, Nernst equation, thermodynamic aspects and their applications.

Section 6: Reaction Kinetics
Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Reversible and irreversible inhibition of enzymes.

Section 7: Thermodynamics
Qualitative treatment of state and path functions, First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff equation, heat of reaction, Hess’s law, heat of formation. Second law, entropy and free energy. Gibbs-Helmholtz equation, free energy change and spontaneity. Free energy changes from equilibrium constant.

Section 8: Structure-Reactivity Correlations and Organic Reaction Mechanisms
Acids and bases, electronic and steric effects, Stereochemistry, optical and geometrical isomerism, tautomerism, conformers and concept of aromaticity. Elementary treatment of SN1, SN2, E1, E2 and radical reactions, Hoffmann/Saytzeff rules, addition reactions, Markownikoff rule and Kharasch
effect. Elementary hydroboration reactions. Grignard’s reagents and their uses. Aromatic electrophilic substitutions, orientation effect as exemplified by various functional groups. Identification of common functional groups by chemical tests.

Section 9: Chemistry of Biomolecules

Amino acids, proteins, nucleic acids and nucleotides. Peptide sequencing by chemical and enzymatic proteolytic methods. DNA sequencing by chemical and enzymatic methods. Carbohydrates (upto hexoses only). Lipids (triglycerides only). Principles of biomolecule purification-Ion exchange and gel filtration chromatography. Identification of these biomolecules and Beer-Lambert’s law.
Section 1:
Organization of life; Importance of water; Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids; Protein structure, folding / misfolding and function; Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin.

Section 2:
Enzyme kinetics, regulation and inhibition; Vitamins and Coenzymes; Bioenergetics and metabolism; Generation and utilization of ATP; Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism; Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis, Calvin cycle.

Section 3:
Biochemical separation techniques: ion exchange, size exclusion and affinity chromatography, centrifugation; Characterization of biomolecules by electrophoresis; DNA- protein and protein – protein interactions; UV-visible and fluorescence spectroscopy; Mass spectrometry.

Section 4:
Cell structure and organelles; Biological membranes; Action potential; Transport across membranes; Membrane assembly and Protein targeting; Signal transduction; Receptor-ligand interaction; Hormones and neurotransmitters.

Section 5:
DNA replication, transcription and translation; DNA damage and repair; Biochemical regulation of gene expression; Recombinant DNA technology and applications: PCR, site directed mutagenesis, DNA-microarray; Next generation sequencing; Gene silencing and editing.

Section 6:
Immune system: Innate and adaptive; Cell of the immune system; Active and passive immunity; Complement system; Antibody structure, function and diversity; B cell and T Cell receptors; B cell and T cell activation; Major histocompatibilty complex; Immunological techniques: Immunodiffusion, immune-electrophoresis, RIA and ELISA, flow cytometry; monoclonal antibodies and their applications.
Section 1: Plant Systematics
Botanical nomenclature, history of plant taxonomy, diversity and classification of plants, APG system of plant classification; phylogenetics and cladistics, molecular taxonomy and DNA barcoding; Centers for plant taxonomy and herbaria in India.

Section 2: Plant Anatomy
Anatomy of root, stem and leaves, floral organs, embryo and young seedlings, Primary and secondary meristems, stellar organization, vascular system and their ontogeny, xylem and phloem structure, secondary growth in plants and wood anatomy, plant cell structure and differences from animal cells.

Section 3: Plant Development; Cell and Tissue Morphogenesis
Life cycle of an angiosperm, development of male and female gametophyte; cell fate determination and tissue patterning; spacing mechanisms in trichomes and stomata. Embryogenesis, organization and function of shoot and root apical meristems. Transition to flowering: photoperiodism and vernalization, ABC model of floral organ patterning, pollen germination, double fertilization, seed development; Xylem and phloem cell differentiation, photomorphogenesis; phytochrome, cryptochrome, phototropin. Role of auxin, cytokinin, gibberellins, and brassinosteroids on plant development.

Section 4: Plant Physiology and Biochemistry

Section 5: Genetics and Genomics

Section 6: Plant Breeding, Genetic Modification, Genome Editing
Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, embryo rescue, haploid and doubled haploids, plant tissue culture: micropropagation, embryo culture and in vitro regeneration, somatic embryogenesis, artificial seed, cryopreservation,
Section 7: Economic and Applied Botany
A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Major Indian cash crops. Effect of industrialization on agricultural botany such as plastic on fiber economy. Genetically modified crops and its regulation eg.Bt cotton, Btbrinjal golden rice etc.

Section 8: Plant Pathology
Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria, nematodes and viruses, and their control measures (chemical and biological) mechanism(s) of pathogenesis, resistance: basal, systemic, induced systemic resistance, gene for gene concept. Molecular detection of pathogens; plant-microbe interactions: symbionts and mycorrhiza, pathogens and pests. Signaling pathways in plant defence response; salicylic acid (SA) and jasmonic acid (JA) in plant-pathogen and plant-herbivore interaction, necrosis; host-parasitic plant interaction (such as Cuscuta).

Section 9: Ecology and Environment
Ecosystems – types, dynamics, degradation, biogeochemical cycles, ecological succession; food webs and energy flow through ecosystem; vegetation types of the world, Indian vegetation types and biogeographical zones, climate and flora endemism; pollution and global climate change, speciation and extinction, biodiversity and conservation strategies, ecological hotspots, afforestation, habitat restoration; plant interactions with other organisms; epiphytes, parasites and endophytes.
Section 1: Historical Perspective
Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases.

Section 2: Methods in Microbiology
Pure culture techniques; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; antigen and antibody detection methods for microbial diagnosis; Light-, phase contrast-, fluorescence- and electron-microscopy; PCR, real-time PCR for quantitation of microbes; Next generation sequencing technologies in microbiology.

Section 3: Microbial Taxonomy and Diversity
Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy and phylogeny.

Section 4: Prokaryotic Cells: Structure and Function
Prokaryotic Cells: cell walls, cell membranes and their biosynthesis, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Bacterial locomotion, including positive and negative chemotaxis.

Section 5: Microbial Growth
Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth; Bacterial biofilm and biofouling.

Section 6: Control of Micro-Organisms
Disinfection and sterilization: principles, methods and assessment of efficacy.

Section 7: Microbial Metabolism
Energetics: redox reactions and electron carriers; Electron transport and oxidative phosphorylation; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways.

Section 8: Microbial Diseases and Host Pathogen Interaction
Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Opportunistic infections; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; passive immunization; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi.
Section 9: Chemotherapy/Antibiotics
General characteristics of antimicrobial drugs; Antibiotics: Classification molecular mechanism of mode of action and resistance; Antifungal and antiviral drugs.

Section 10: Microbial Genetics
Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to *E.coli*; Phage λ and its life cycle; RNA ; mutation in virus genomes, virus recombination and reassortment; Basic concept of microbial genomics.

Section 11: Microbial Ecology
Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants; Bioremediation; Uncultivable microorganisms; basic concept of metagenomics and metatranscriptomics.
Section 1: Animal Diversity
Distribution, systematics and classification of animals, phylogenetic relationships (based on classical and molecular phylogenetic tools).

Section 2: Evolution
Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation.

Section 3: Genetics
Basic Principles of inheritance, molecular basis of heredity, sex determination and sex-linked characteristics, cytoplasmic inheritance, linkage, recombination and mapping of genes in eukaryotes, population genetics, genetic disorders, roles of model organisms in understanding genetic principles.

Section 4: Biochemistry and Molecular Biology
Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation, Krebs cycle, glycolysis, enzyme catalysis, hormones and their actions, roles of vitamins and minerals.

Section 5: Cell Biology
Basic principles of cellular microscopy, structure of cell, cytoskeletal organization, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure.

Section 6: Gene expression in Eukaryotes
Eukaryotic genome organization and regulation of gene expression, transposable elements.

Section 7: Animal Anatomy and Physiology
Comparative physiology, the respiratory system, Muscular system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system.

Section 8: Parasitology and Immunology
Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response.

Section 9: Development Biology
Gametogenesis, Embryonic development, cellular differentiation, organogenesis, metamorphosis, Model organisms used in developmental biology, genetic and molecular basis of development, stem cells.
Section 10: Ecology

The ecosystem, Animal distribution, ecological niche and its contribution to ecological diversity, the food chain, population dynamics, species diversity, zoogeography, biogeochemical cycles, conservation biology, ecotoxicology.

Section 11: Animal Behaviour

Type of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of behavior in animals.
Section 1: Food Chemistry and Nutrition

Section 2: Food Microbiology

Characteristics of microorganisms: morphology of bacteria, yeast, mold and actinomycetes, spores and vegetative cells, gram-staining. Microbial growth: growth and death kinetics, serial dilution technique. Food spoilage: spoilage microorganisms in different food products including milk, fish, meat, egg, cereals and their products. Toxins from microbes: pathogens and non-pathogens including Staphylococcus, Salmonella, Escherichia, Bacillus, Clostridium, and Aspergillums genera. Fermented foods and beverages: curd, yoghurt, cheese, pickles, soyasauce, sauerkraut, idly, dose, vinegar, alcoholic beverages and sausage.

Section 3: Food Products Technology

Section 4: Food Engineering